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TWO METHODS FOR CALCULATING THE PHYSICAL OPTICS FIELD 

1.    INTRODUCTION 

Given a plane wave incident on a reflecting surface S, the physical 
optics (PO) field scattered by S is given by 

(1) J exp[-i k(S-u))«x] U-w)^ dA 
4irR JS 

where k * 2ir/A is the wave number, R is the radar range, C is a unit vector 
perpendicular to the wave front pointing from the source to S, d> is the unit 
vector pointing from S to the field point (observer), x is the position vec- 
tor of a general point on S, n is the unit normal to S, and dA is the infini- 
tesimal element of area on S.  Hence J is a dimensionless quantity, and if P^ 
is the incident field power on S, the power at the field point is given by P 

- PJJI2. 

We shall hereafter be concerned with the monostatic case 5 = - u>, so 
that ignoring the range dependence in (1), the integral becomes 

1 (2) J  -  (1/X)      j      expli 2Vt  u>  • x]   w •  TI dA     . 
-'s 

The radar cross section a  is then related to J by 

(3) o = 4TT |J|2  . 

The integral (2) is always taken over only the illuminated part of a surface, 
defined by the relation oi • n >_ 0. 

Closed form expressions for (2) can be obtained in only a few very 
special cases, and the numerical evaluation of these integrals is difficult. 
However, in previous work [1] the author has shown that the double integral 
(2) over S can be reduced to a line integral over the boundary of S when S is 
flat.  If, moreover, S is a polygonal plate this line integral can be further 
reduced to a close-form expression involving no integrations at all.  The 
existence of simple closed-form formulas for polygonal plates motivates the 
facet decomposition method for calculating the PO field scattered by a curved 
surface S:  the surface S is approximated by a collection of triangular 
facets, and the closed form scattering formula is applied to each facet.  The 
closed-form scattering formulas for polygonal plates are reproduced here in 
Appendix A, with certain modifications which are necessary to insure the 
proper phasing between the various facets. 

We shall also consider the numerical evaluation of (2) by means of a 

Monte Carlo method in which integrals of the form 

Manuscript approved January 11, 1984. 
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1 (4) J -  \ f(x) dA 
;s 

are approximated by sums of the type 

BE N 

(5) J - -  2  f<xn) 

where the x^ are a random sample of points from a uniform distribution on S. 
In theory, there is no limit on the accuracy of either method, but there are 
practical limits to their usefulness, and the relative merits of the two 
methods is a question of economics (cost), and is machine dependent. 

The Monte Carlo method almost always requires the use of thousands of 
functional evaluations, even when S is flat, whereas the facet decomposition 
method can sometimes yield accurate results with only a few facets when S is 
only slightly curved. On the other hand, the Monte Carlo method runs very 

-i^ fast, the coding is simple, and the requirements for computer storage are 
K> minimal, whereas the facet decomposition method requires a large amount of 
^ storage.  For example, when the so called "optimal" compiler is used with the 
"^ TI ASC, one is not permitted to use an array with more than 2^ -  33,000 
w£» elements, and this limit is attained when the number of facets exceeds 5000. 

The only practical limitation to the Monte Carlo method appears to be 
round-off error, caused by finite word length.  This appears to limit the 
number of sample points to a few tens of thousands for the ASC (which has a 
short word length), and this limit is reached long before one exceeds a 
reasonable cost limit for CPU time.  The finite word length also affects the 
reliability of the facet decomposition method, but in another way.  The 
scattering formula for triangles is of the form (A+B+C)/e, where, for 
near normal incidence, e and (A+B+C) are small, while each of the terms A, B 
and C is on the order of unity.  When this happens the resulting calculation 
may be greatly in error, and one has to exercise care in devising methods to 
detect the occurrence of such bad cases and make the proper adjustments.  The 
facet decomposition method can also be expensive in CPU time since it 
requires 9 trigonometric function evaluations for each facet whereas the 
Monte Carlo method requires only two trigonometric function evaluations per 
sample point. 

Hence, to summarize, the Monte Carlo method runs fast, but its accuracy 
is limited by round-off error. The facet decomposition method is sometimes 
more costly in computer running time, and is also limited by constraints on 
computer storage.  However, the facet decomposition method is more accurate 
and economical when the surface S is only slightly curved.  Both methods 
require a substantial amount of calculation (thousands of points or facets) 
when S is a "moderately" curved surface which contains only a few Fresnal 
zones. 

Finally, we should remark that the theory of Physical Optics is a high 
frequency approximation to reality, and that the problem of determining when 

•.._-, 
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PO theory yields physically valid results is different from the mathematical 
problem addressed in this report, viz., the accurate numerical calculation of 
the integral (2). 

2.   TRIANGULAR DECOMPOSITION 

Letting x = (x^, x2, x^) denote a general position vector for points on 
S, the surface S is defined by a system of parametric equations. 

(6) x = x(u,v) 

where (u,v) varies over a domain D in the Euclidean plane.  We usually take D 
to be the unit disk {u2 + v2 <_ 1}, or the unit square {0 < u < 1, 0 < v < 1}, 
depending upon whether S has one or two boundary curves.  In the former case 
the boundary curve of S is not necessarily a circle since (6) describes a 
deformation of D.  In the latter case S is topologically equivalent to a 
cylinder. Geometrically, a cylinder is obtained by gluing together two 
opposite sides of a square.  In analytic terms, this means that the paramet- 
ric equations for a cylinder satisfy 

x(u, 0) =  x(u, 1). 

To obtain an approximation of S by a collection of facets, we triangu- 
late D and then lift the triangles via (6).  Once a triangul^.. i zation is 
given, a finer triangularization is obtained by replacing each triangle by 
four smaller ones, as we now describe. 

Triangles in the disk D are said to be boundary or interior, the former 
being triangles with two vertices on the boundary circle.  Thus, in Figure 1, 
only triangle 1 is boundary (since 2 has only one vertex on the boundary). 
To subdivide an interior triangle, we join the midpoints of the legs, as 
shown by the dotted lines in the figure. The subdivision of a boundary tri- 
angle is also shown in Figure 1, where A' is the midpoint of the arc BC. 
Note that in subdividing a boundary triangle, we obtain two interior and two 
boundary triangles, and that only one of these four is contained in the 
original triangle. 

To triangulate the disk D we first start with an initial configuration 
of F0 triangles obtained by joining F0 equispaced points on the boundary 
circle to the center.  Figure 2a shows the initial configuration for the case 
F0 • 4, and it is seen that all the triangles in the initial configuration 
are of boundary type.  Figure 2b shows the results of the first subdivision; 
there are 16 triangles, and in this case only the odd numbered ones are of 
the boundary type.  At the second subdivision (not shown) there will be 64 
triangles, of which only 16 will be of the boundary type. More generally, at 
each subdivision the total number F of triangles (or facets) increases by a 
factor of 4, while the number of boundary triangles doubles. 

The initial configuration of a square is always taken to be the four 
triangles shown in Figure 3A.  In this case we do not have to distinguish 
between boundary and interior triangles; at each subdivision each triangle is 
decomposed into four smaller ones by joining the midpoints. 

•^^iv:::^ 
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Given a configuration of F triangles, let E, and V denote the number 
of edges and vertices, and let Vfc be the number of vertices which lie on the 
boundary.  Then, from topological generalities it is known that 

F - E + V 1, 

2E =» 3F + Vfc  . 

Hence, for F large, we have the approximate relations 

E " (3/2) F , 

V • (1/2) F . 

Table 1 shows the values of F, E, V, VD for up to 5 subdivisions and two 
initial configurations.  The row labled 0 shows the data for the initial 
configuration. Also, when D is the disk, V"t, is also the number of boundary 
triangles. 

TABLE 1 

Values of F, E, V and V^ vs 
Number of Iterated Subdivisions 

Number of 
Iterations 

F E 

= 3 

V Vb F 

Fn = 

E 

4 

V Vb 

0 3 6 4 3 4 8 5 4 

1 12 21 10 6 16 28 13 8 

2 48 78 31 12 64 104 41 16 

3 192 300 109 24 256 400 145 32 

4 768 1176 409 48 1024 1568 545 64 

5 3072 4656 1585 96 4096 6208 2113 128 

3. THEORETICAL ERROR ANALYSIS 

3A. ERROR ANALYSIS FOR THE MONTE CARLO METHOD 

To begin, given a general integral of type (4) we first calculate the 
standard deviation of the estimate (5).  The derivation is given in Appendix 
B, and it turns out that J is an unbiased estimate of J whose standard 
deviation <5J is given by 

(7) 6J ?A*i}!]2d*~ulT- 

m. 
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where A is the area of S.  It is interesting to note that from the Schwarz 
inequality we have 

|J| 
2  = i 1  dA /l«PJ 1  dA    = 

! 
f|2  dA 

with equality only when f is constant; hence the term in brackets measures 
the variability of f. 

In practice, the integral (2) ovei S is reduced to an integral over 
some planar domain, (e.g., by means of the parametric representation (6) 
discussed in the previous section), and an especially revealing relation is 
obtained if the plane P is perpendicular to the vector u.     We recall that 
the scattering integral is performed over only the illuminated portion of a 
surface for which w • n > 0, and we have 

dAo » (to • n) dA 

where dAQ is the projection of dA onto P.  Hence from (2), 

(8) 1 (1/X) exp[i2k m  • x] dA, 

where S0 is the projection of S onto P. Applying (7) to the integral (8), 
we have |f| = 1/X, and therefore 

(9) ÖJ = — 

ri 3-MI« 3 
1/2 

where AQ is  the area of  S0.     Setting 

(10) a0 = 4TV A^/X
2
   , 

from (8) we have |j| <^ A0/A, and from (3) we have 

(11) 

and from (9) we have 

a <   a0   , 

(12) ÖJ = 
/<%-« 

/4w N 

We note that a m   aQ  only when S is flat and the incidence is normal. 

Following (3) it is natural to estimate the radar cross section a by o 
where 

(13) a = 4* |j|2 . 

In Appendix B it is shown that a has a bias B given by 

rArly^v'/iL^vrvA^^ 
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(14) B(o) =» (a0-a)/N . 

The general expression for the standard deviation 5a of a is extremely messy; 
however, when a << aQ and the errors are small we have the approximate 
relation 

(15) So/ a  - Jl7!    /ÖÖ7Ö • 

Examples will be given in Section 3, and it will be seen that accurate 
estimates are harder to attain when a  is small. 

B. Error Analysis for the Facet Decomposition Method 

Let R^, R7 be the principal radii of curvature on S and let RQ be a 
lower bound to R^, R2 which holds everywhere on S.  In Appendix C it is 
shown that when the total area of the collection of facets approximates the 
area of S, then the error M  in the estimate of J satisfies 

8TT   A2   1 
(16) AJ < — •   • -  • 

and for small errors the corresponding bound for the relative error La/0 is 

32ir3/2     A2    1 
(17 ) Lai a < 

J% X2R„/ä o a N 

B In particular, when S is flat, RQ =» =», and the right hand sides of (16) and 
j>\ (17) are zero.  Strictly speaking, these relations are derived only for the 
**-"/ case when the facets are equilateral triangles; however, we have found that 
C-"\ these relations are valid in the more general case, except when both the 
,"]-." actual and predicted relative errors are extremely small (<< 10"^).  However, 
_^ the error bound (17) is very often overly pessimistic, and we shall therefore 
jip discuss how the accuracy of the Facet Decomposition method can be judged by 
-'„v. observing how the estimates vary with N. 

,\V 4.    EXAMPLES 

In this section we shall present the results of numerical calculations 
for two test cases, the sphere and the spherical cap.  In both cases we 
shall compare the results of the Monte Carlo and Facet Decomposition methods 
with each other, and with the performance predicted by the error analysis 
discussed in ehe previous section. 

4A.  The Sphere 

We first consider the results for the Monte Carlo method. For a 
sphere of radius a, the illuminated part is a hemisphere with area A = 
2TT a , and the planar projection S has area AQ = IT a .  Hence 

a    = (4TT/X2) (TT a2)2  . 

6 
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When ka > 1, we have a a n a«   q,   and from (14) and (15) we have y\ 

(18) B = 
4ir3a4 

X2 N 

(19) 5a/ a = ka /TN    . 

In the cases considered below, we take a = 1 and X = 1, 1/2, 1/4, 1/8.  For 
these cases we have a = IT exactly, and in Tables 2-5 the columns labelled a' 
are the estimated values of the normalized res c"  = a/rca2 (»1) obtained by 
a Monte Carlo approximation with the indicated number N of points, and B' and 
6a/a are calculated according to 

4 IT2 

5a/a 

X2 N 

(2/2~)TT 

X/N 

r. 

When 5a/a > 1, the error is large and the results are unreliable.  Since 
the true value of a"  is unity, the relative error is | ö' - l|, and we note 
that the errors always fall within the expected range.  We also note that 
the errors would not be significantly improved by making the obvious bias 
correction. 

We now consider the results for the Facet Decomposition Method.  By 
convention, we take the parametrizing disc D to lie in the equatorial plane, 
and the entire sphere is triangulated by lifting the triangularization of the 
disc onto both the northern and southern hemispheres.  As the aspect angle 
is varied different hemispheres are illuminated, and hence different aspect 
angles correspond in effect to different triangularizations of a hemisphere. 

The results of the calculation are shown in Tables 6-9 for four differ- 
ent aspect angles 9, with 8 being the colatitude, and three different 
levels of triangularization.  The inital configuration (on the disc) was four 
triangles, and we show the results for the 3'rd, 4'th, and 5'th iterated 
subdivisions, with the number N of facets being 256, 1024, and 4096, respec- 
tively,  (cf. Table 1.)  The error bounds for Aa/a given by (17) are not 
useful for these cases since they are all greater than unity, except for the 
case X =• 1.0, N * 4096 when the value is .56. 

Confining our attention to the column N • 4096, we see that there are 
some particularly bad results at (X = 0.5, 3 = 90°); (X • 0.25, 6 = 90°); 
(X »0.125, 9-0").  In fact, in the first of these cases the results are ;.\ 
better at N * 1024 than N • 4096.)  In Section 1 we discussed a numerical 
problem which can occur when the incidence is almost normal to a facet, and 
the computer was programmed to treat near normal incidence as normal inci- 
dence, and to print a warning if the contribution from a facet was larger 

.\i 
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TABLES 2-5 

Monte Carlo Estimates of the Normalized RCS a' 
for the Unit Sphere 

Table  2 Table 4 

X =  1.0 X = 0. 25 

N a' B' 5a/ a N a' B' 6a/ a 

1200 1.0523 .0329 .26 1200 1.8505 .5264 >   1 

4800 .8903 .0082 .13 4800 1.7256 .1316 .51 

19200 .9519 .0021 .064 19200 .7201 .0329 .26 

38400 .9686 .0010 .045 38400 .8137 .0x64 .18 

Table  3 Table 5 

A =  0.5 i X = .1 25 

N a' B' 60/ a N 5- B' 6 a/ a 

1200 .5779 .1316 .51 1200 4.6054 2.1055 >  1 

4800 1.1409 .0329 .26 4800 3.3170 .5264 >   1 

19200 1.0215 .0082 .13 19200 1.2680 .1316 .51 

38400 1.0794 .0041 .091 38400 1.1914 .0658 .36 

8 
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TABLES 6-9 

Facet Decomposition Estimates of the Normalized RCS a' 
for the Unit Sphere 

Table 6 Table 8 

X = 1.0 X =   .25 

N 
9 

256 1024 4096 N 
9 

256 1024 4096 

0° 1.0485 1.0826 1.0442 0° .1441 .7604 1.1206 

30 1.0186 .9184 .9402 30 .3090 .7550 1.0431 

60 .9534 .9870 1.0132 60 .8500 .8029 .9863 

90 .2198 .6261 .9726 90 .6208 .2749 .5387 

Table  7 Ta ble 9 

X = 0.5 X =   .125 

N 
9 

256 1024 4096 N 
9 

256 1024 4096 

0° .6975 1.1027 1.0957 0° .0300 .0245 .7915 

30 .7164 .8782 .9605 30 .2246 1.0458 1.0154 

60 .9127 .8558 .9326 60 .8220 1.0939 .9315 

90 .0956 .9905 .5570 90 1.1214 .7421 .9890 

£ 
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than theory permits.  Such warnings did not occur, and since the worst (and 
best) results did not always occur at the same aspect angle, we do not 
believe that this numerical problem was responsible for these bad results. 
Because of the existence of these bad cases, we cannot claim that the Facet 
Decomposition method is superior to the Monte Carlo method for calculating 
the field scattered by a sphere. 

4B. The Spherical Cap 

Given a sphere of radius a, the surface area A and the projected planar 
area AQ are given by 

A =  2irah     , 

A0 =   irr2 =   TT (2ah-h2)     . 

(See Figure 4.)  In the example we shall keep A and X fixed, with A = 2TT 
and \  • 1/8, and we shall vary a in such a manner that h is in integral 
multiple of A/4.  Since A = 2rah = 2IT, we have 

h = m X/4 = m/32  , 

a = 1/h = 32/m . 

We shall only present the results for axial incidence (along the axis of 
symmetry), and hence m is the number of Fresnel zones contained in each cap. 
One wotild therefore e.cpect that a  is small when ra is even, and this turns 
out to be the case. Although the Fresnel zones within a given cap have 
equal areas, a is not exactly zero when m is even because of the "obliquity 
factor" cos 9 = iii»n occurring in the integrand (2). 

The results of the numerical calculations are shown in Table 10 for 
both the Monte Carlo method with 40,000 sample points and the Facet Decompo- 
sition method with 4096 facets.  The values of a are shown in both absolute 
terms and dB, and the standard deviations 5a and error bounds Ao are calcu- 
lated according to (15) and (17), where a is given the estimated value a 
(unlike the case for the sphere, where the "true" value of a was known and 
used).  The value of a0 is calculated according to (10), so that a0 = 
31750 (45.0 dB).  We also recall that a0 is the limiting value of a as a 
increases without bound, and it was observed that for large values of a (not 
shown in the table), the estimated values of a converged to this value. 

We note that for m odd (and a  large), the Monte Carlo and Facet 
Decomposition estimates are within a few tenths of a dB of each other (except 
when m • 9), and that the two values always differ by less than 6a  . 

For even values of m (a small), it appears that the Facet Decomposi- 
tion method gives better results.  The nulls predicted by this method are 
deeper than those predicted by the Monte Carlo method, and one would except 
to see extremely small values of a when m is small and even. Moreover, the 
bias of the Monte Carlo method (calculated according to (14)) is equal to 
.79, which is larger than any of the estimated values of a  for m even, and 
the values of Sa  are also larger than a, so that the Monte Carlo estimates 
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TABLE 10 

Monte Carlo and Facet Decomposition Estimates of a for a 
Spherical Cap with Radius a and Height h = mX/4. (X » 0.125) 

Monte Carlo 
N = 40,000 

m a a  (dB) Sa 

1 32.0 12814.0 41.1 110.3 

3 10.7 1375.5 31.4 45.7 

5 6.4 525.8 27.2 28.6 

7 4.6 236.2 23.7 19.3 

9 3.6 124.6 21.0 14.0 

11 2.9 88.4 19.5 11.8 

2 16.0 .6441 -1.9 1.01 

4 8.0 .7228 -1.4 1.07 

6 5.3 .4908 -3.1 .88 

8 4.0 .1413 -8.5 .47 

10 3.2 .4912 -3.1 .88 

12 2.7 .5935 -2.3 .97 

Facet Decomposition 
N - 4096 

a 

12764.0 

1412.7 

499.9 

250.4 

146.6 

94.6 

.0001 

.0308 

.1186 

.2206 

.3360 

.4690 

ö (dB) Ao 

41.1 224.0 

31.5 222.9 

27.0 221.7 

24.0 218.3 

21.7 213.5 

19.8 212.9 

40.0 0.04 

15.1 1.39 

9.3 4.12 

6.6 7.45 

4.7 11.50 

3.3 16.10 

are unreliable.  We also note that for m even and increasing the Facet 
Decomposition estimates also increase, which is what one would expect because 
of the variation of the obliquity factor. 

We again emphasize a distinction between (15) and (17). The first is 
an equation for the standard deviation of an estimate involving random fac- 
tors, whereas the second is an upper bound to the error in an estimate 
involving no random quantities. A large value of Sa/a calculated according 
to (15) necessarily implies that the Monte Carlo estimate is unreliable, 
whereas a large value for the bound on Ao/a given by (17) carries no such 
implication for the Facet Decomposition estimate.  However, when the bound 
for La/a  is large the accuracy of the Facet Decomposition method can be 
judged by observing the variation of a with increasing N.  In Table 11 we 
have tabulated o vs. N for 4 odd values and 4 even values of m.  The esti- 
mates for ra • 1, 5, 9 appear to be highly reliable since the values for N = 
1024 and N « 4096 differ by less than one percent.  We recall that the radius 
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N m - 1 m = 5 

4 7323 206.8 

16 11801 344.4 

64 12581 580.4 

256 12746 473.8 

1024 12795 498.2 

4096 12764 499.9 

TABLE 11 

Facet Decomposition Values of ö vs. N = Number of Facets 

a = 32 a = 6.4  a = 3.6  a = 2.9 a • 16 a = 5.3  a = 3.2 a = 2.7 

m=9   m=ll m=2 m = 6 m = 10 m=12 

59.69   38.29 1298.5 139.8 47.2 31.3 

26.74   57.45 222.7 223.9 46.8 7.0 

180,17  134.39 7.9 9.2 16.8 26.1 

164.44  112.48 .4472 .8577 4.7 2.4 

147.11   98.51 .0321 .0921 .3730 .2126 

146.63   94.63 .0001 .1186 .3360 .4690 

a • 32/m decreases as m increases, and we note that acceptable results are 
obtained for the largest value of a (flatest cap) with only 64 facets.  For 
the even values of m, we note a large percentage difference between the 
values for N • 1024 and N • 4096, and it therefore appears that the relative 
errors are large.  However, in absolute terms, one can still feel confident 
that a  < 1 in these cases, and hence that by introducing small (quarter- 
wavelength) changes in the height of a spherical cap can increase or decrease 
its res by orders of magnitude. 

5.   SUMMARY AND CONCLUSIONS 

(i) The accuracy of the Monte Carlo method is limited by roundoff error, 
whereas the Facet Decomposition method is limited by computer storage and CPU 
time. The Facet Decomposition method is superior when the reflecting surface 
S is sufficiently flat. 

(ii)  The Monte Carlo estimate of a has a bias B and standard deviation 6o 
given by 

(14) B •  (o0-o)/N     , 

(15) 6a/a -  /2/N    Säja 
H 
.-• where N is  the number of  sample points,  and 

ft (10) 00  -  4irA0/X
2     , 

JO 
.\\ where AQ is the area of the projection of S onto a plane perpendicular to 
Pr< the incidence vector.  An upper bound to the error of the Facet Decomposition 
""" method is given by 

12 

•^t-^-J-^-. ••• AM. .A^-.V\VAV.-^\V\^-iVVV-.VAV.\'-.V. VWWI 



•'v'^p>-VV.'.-'*S'>V-"--V>-^.^S'V rr»" V 

(17) Aa/a < 
32TT3/2 

/3 x\ro 
1 

N 

where N is the number of facets and R0 is a lower bound to the principal 
radii of curvature.  (Thus R0 = " when S is flat, in which case the Facet 
Decomposition method is exact.)  According to these formulas, the calcula- 

1 

tion of a  should be easier and more reliable when a, A, 
and this prediction has been borne out by experience. 

and R0 are "large", 

(iii) A large value of 5a/ a  (calculated according to (15) necessarily 
implies that the Monte Carlo estimate is unreliable, whereas a large value 
for the bound on Aa/ a given by (17) carries no such implication for the 
Facet Decomposition estimate. However, when this bound is large, one can 
still gauge the accuracy of the Facet Decomposition estimate by observing 
how it varies with increasing N, since accurate estimates will converge to 
some value (the true one) as N increases. 
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Fig. 1 — Subdivision of interior and boundary triangles 
only the upper triangle (ABC) is of the boundary type 

2b 

INITIAL CONFIGURATION FIRST SUBDIVISION 

5 3  ^^v 

6 \     2 
/1   7    \ 

8 4    >v       / 
1    \\ 

12 16/    \ 
\\   9    1 10 

11 

/       14 

13 

^   15 // 

Fig. 2 — Subdivision of the disc 
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3a 

INITIAL CONFIGURATION 

3b 

FIRST SUBDIVISION 

Fig. 3 — Subdivision of the square 

A = 2nah 
A0 = rrr2 

r2=a2-(a-h)2 

= 2ah - h2 

Fig. 4 — Spherical cap with height = h 
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APPENDIX  A 

Scattering Formula for a Flat Polygonal Plate 

In Ref [1] we gave a closed form expression for the Physical Optics 
(PO) field scattered by a flat polygonal plate, and for convenience the point 
of zero reference phase was chosen to lie somewhere on the polygon.  In our 
present work we are concerned with summing the contributions from many dif- 
ferent facets, and their relative phases must now be taken into account.  A 
convenient way of doing this is to take the point of zero reference phase to 
be the field point, and to refer the vertices of all the polygons to a common 
coordinate system.  (It might be "natural" to assume that the phase of the 
field scattered by each facet corresponds to its centroid, but this is not 
correct.)  To obtain the correct result, we multiply the expression for the 
incident field (given at the bottom of p. 590 of Ref [1]) by a certain quan- 
tity (exp[- ik 5 • R]) which makes the phase zero at the field point.  Then, 
by linearity, we multiply all the expressions given in Ref. [1] for the 
scattered field by the same quantity. 

We shall give the resulting equations for a flat polygonal plate with 
N vertices.  The results will be stated for the bistatic case, and we use the 
same notation as in equation (1) of Section 1 of this report.  In addition, 
let 

0 = fixed origin (same for all facets) 

f = position vector of the field point P; 

i.e., f = P - 0. 

xn • position vector of the n'th vertex of the polygon. 

a = £ - a) (= -2u for the raonostatic case) 

0 = a - (a«n) n . 

We set x-y+i  = xi and A xn * *n+l " 
xn» (n = *•• 2,..., N).  The field J scattered 

by the polygon is given by 

For g *  0, 

(4TT 

where 

R) J -  [- exp(- ika-f)   •  «2-1   •  I    Tn 
L J    [|3|2j    n-1 

•n - (<* x n) • A xn 

sin(y a*A xn) 

Cf <*•* *n> 
* exP — a*(xn+xn+l); 
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For 8-0, 

(4* R) J =• [- exp(- ikct'f)] [2ik (wn) A exp(ika«q)] 

where A is the area of the polygon and q is the position vector of any point 
on the polygon. (When 8=0, a is a scalar multiple of the normal vector n, 
and hence cx»(q-q') = 0 for any two points q, q" on the polygon.) 

We note that the factor [- exp(- ik ct»f)] is the same for all facets, 
and hence can be neglected when the total set of scatterers consists of 
polygons only. 

1 
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APPENDIX B 

Error Analysis for the Monte Carlo Method 

Let x be a random point with a uniform distribution on S, and let f be 
a function on S with integral 

'•I 
The expected value of f(x) is 

f dA . 
S 

C dA 
E f(x) = I f(x) — = J/A 

since dA/A is the uniform density on S.  Hence the quantity A f(x) is an 
unbiased estimator of J, and its variance is 

E[|A f(x)|2] - |j|2 = j* A.2 | f 12 / ±±^ - |j|2 

= J Ajf|2 dA - IJI2  . 

The relation (7) then follows from (5), since the quantities A f(xn) are 
uncorrelated estimates of J. 

The calculation of the standard deviation <SJ is given in the text. 
To calculate the bias B, let AJ be the error in J.  Then 

a= 4-IT |3"|2 =- 4TT jj -t- Aj|2  . 

Expanding, and using the fact that E(AJ) • 0 (since J is unbiased), we get 

Eo » 4ir[|j|2 + E |Aj|2] • o+4iT | &J j 2  . 

Hence, using (12), 

B - E 5 - a= 4TT|(5J|
2
 • (a0-a)/N . 

We conclude by sketching the derivation of (15).  Let J^ and J2 be the 
real imaginary parts of J, so that 

a = 4TT(JL
2
 + J,2)  . 

Then, neglecting higher order terms for small errors, we have 

Ao = 8TT (J]_ AJi + J2 AJ2)  • 

PI 
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Squaring, and applying the expected value operator E, we get 

(6a)2  « EUo)2 « (8TT)
2
 [JX

2
( 4^)2 + (J2)

2( SJ2)
2 + ZJJJJKAJJ/A^I • 

If one writes out the errors (AJi) , (äJ2^ 
anc* tne corresponding expressions 

for the variances (<5J^) , (6J2) , then it turns out that some terms are on 

are on the order of a0/N while others are on the order of a/N; neglecting 

the latter, one obtains 

(djn)2    =    (dJ9)
2 , 

Co 

8TTN 

LVl 

Hence 

E(AJi   •   AJ2)   3 0 

<h 7 7 7 7° 7 a ° 
(6a)2 =  (8TT)

2
  (J  2 + J  2)    =  (8TT)

2
   • —   •   

1 *       8TTN 4 IT      8TTN 

>/ 

and 

= 2   a a0/N     , 

<SO7<J =  /27¥ /a0/ a 
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APPENDIX C 

Derivation of the Error Bounds for Facet Decomposition 

Let f denote the vector valued function 

f(x) = exp[i2ku>»x] en/X , 

so that 

J 1 f • n dA 

Since |ü)|2 » l, the divergence of f is given by 

V^f = (i2k/A) exp[ i2ku)«xj . 

Hence, using the Divergence Theorem, 

Ml = 
^AV 

f dV < (4TT/X2) AV , 

where AV is the volume contained between the surface S and the approximating 
collection of facets. 

With a little geometry one can show that 

AV <  h0 A  , 

where h0 is an upperbound to the height of any point on S above the nearest 
facet, and that 

h0 < 
D2 

where D is an upperbound to the length of the facet edges. Hence 

2TTA 
AJ  < 

A2R„ 
D2  . 

If we now assume that the triangularization is so fine that the total area 
of the facets is approximately A, and that the triangles are equilateral, 
we have 

N( ß.  D2 j =• A  . 

From these last two relations we get (16). 

To derive (17) from (16) we use the usual first order approximations 
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for small errors, We  have 

o = 4i J J*     , 

ba • 4ir (J   AJ* + J*   AJ)     . 

Hence 

La 
a 

_AJ* 
J* 

<     2   IAJI   = 4/TT   IAJI 
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